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Abstract

We consider a family of compact manifolds which shrinks with respect to an appropriate parameter
to a graph. The main result is that the spectrum of the Laplace–Beltrami operator converges to the
spectrum of the (differential) Laplacian on the graph with Kirchhoff boundary conditions at the
vertices. On the other hand, if the shrinking at the vertex parts of the manifold is sufficiently slower
comparing to that of the edge parts, the limiting spectrum corresponds to decoupled edges with
Dirichlet boundary conditions at the endpoints. At the borderline between the two regimes we have a
third possibility when the limiting spectrum can be described by a nontrivial coupling at the vertices.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Graph models of quantum systems have a long history. Already half a century ago Rue-
denberg and Scherr[23] used this idea, following a suggestion by L. Pauling, to calculate
spectra of aromatic carbohydrate molecules; they achieved a reasonable accuracy for such
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a simple model. However, a real boom started only from the late eighties when semicon-
ductor graph-type structures became small and clean enough so that coherent effects in the
corresponding quantum transport can play the dominating rôle. Due to the rapid progress in
fabrication techniques new systems of these type appear every year, making both analysis of
graph model properties and their physical justification an urgent task. For the sake of brevity
we avoid giving a review of the field with the list of applications and restrict ourselves to
quoting the surveys in[1,13–15].

Our aim in the present paper is to contribute to the understanding of ways in which a
graph-type description arises from investigation of some really existing systems. To ex-
plain what we have in mind, recall that the free Hamiltonian of a graph model is the
(differential) Laplacian on the (metric) graph. To define it properly one has to specify the
boundary conditions which couple the wave functions at the vertices. They have to define
a self-adjoint operator, however, this requirement itself does not specify the conditions
uniquely: in a vertex joiningn graph edges we haven2 free parameters, as observed first in
[10].

This non-uniqueness represents the main weakness of graph models. A natural idea to
mend it is to regard the model in question as a limit case of a more realistic one with a
unique Hamiltonian. An appropriate and natural choice is a “thickened graph” composed of
thin tubes which have the same topology as the original graph and reduce to it in the limit
of a vanishing tube radius. Unfortunately, it is by far not easy to see what happens with
spectral and/or scattering properties in such a limit. After a decade-long effort, the spectral
convergence in the case when the “thick graph” is planar with Neumann boundary conditions
has been solved recently by Kuchment–Zeng[16,17], and Rubinstein–Schatzman[26]; Saito
[27] showed the convergence of the resolvent.1

With the mentioned application to description of quantum wire systems in mind it is
clear that an analogous situation in which the tube boundaries are Dirichlet is even more
important. Unfortunately, it also very difficult and despite numerous efforts it remains an
open problem.

The main insight of the present paper is that these two cases do not exhaust all possible
ways in which a family of manifolds can approach a graph. One more choice are manifolds
without a boundary of codimension one inRν, ν ≥ 3, which encloses the graph like a
system of “sleeves”,2 with the limit consisting of the sleeve diameter shrinking. It is not
only a mathematical question; we draw the reader’s attention to the fact that such sleeve-
shaped tube systems are particularly interesting from the viewpoint of recent efforts to build
circuits based on carbon nanotubes. Recall that recently discovered techniques—see, e.g.,
[3,21,29]—allow to fabricate branched nanotubes and thus in principle objects very similar
to the mentioned “sleeved graphs”.

On the mathematical side the main contribution of the paper is the treatment of the
limit problem in a more abstract setting which covers the “strip graphs” of[16,26] and

1 A related earlier result can be found in the work of Colin de Verdière[5] who used the spectral convergence
of thickened graphs to prove that the first non-zero eigenvalue of a compact manifold of dimension greater than 2
can have arbitrary high (finite) multiplicity.

2 In this context Kuchment and Zeng[16] speak also about sleeves. By this notion they mean graph edges
thickened into strips. What we have in mind here is rather a cylindrical surface with the graph edge as its axis.
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their generalizations to higher dimensions, as well as the “sleeved graphs” described above.
This is achieved by using the internal geometry of such a manifold only, so we need not
suppose the latter is embedded in a Euclidean space. Our results even show that the limit is
independentof a particular embedding. Only the abstract graph data count.

Our conclusion will be that such a graph limit can give meaning to some type of vertex
couplings, in particular, those representing a free motion through the junctions, as well as
those which require to extend the graph state space by extra dimensions corresponding to the
vertices. To get the full richness of the vertex behaviour, with possible relation to the graph
geometry, more general limits will be needed. To characterize the results as well as the mo-
tivation in more details, we need some preliminaries; we will do that inSections 2.1 and 3.5.

Finally we give an application on the spectral convergence result in the case of periodic
graphs. In particular, we show the existence of gaps in the spectrum of certain non-compact
periodic graph-like manifolds. For example, attaching a loop at each vertex gives rise to
spectral gaps (cf.Theorem 9.5).

Let us briefly describe the structure of the paper. InSection 2we define the Laplacian
on a graph and give an abstract eigenvalue comparison tool (Lemma 2.1). In Section 3we
define the graph like manifolds associated to a graph. InSection 3.5we motivate the four
different limiting procedures on the vertex neighbourhoods discussed inSections 5–8. Our
main results are given inTheorems 5.2, 6.2, 7.1 and 8.1. In Section 4we define the limit
procedure of the edge neighbourhoods which remain the same in all cases. The last section
(Section 9) contains the mentioned applications to periodic graphs.

2. Preliminaries

2.1. Laplacian on a graph

SupposeM0 is a finite connected graph with verticesvk, k ∈ K and edgesej, j ∈ J .
Suppose furthermore thatej has length�j > 0, i.e., ej ∼= Ij := [0, �j]. We clearly can
makeM0 into a metric measure space with measure given bypj(x) dx on the edgeej,
wherepj : Ij −→ (0,∞) is a smooth density function for eachj ∈ J . We then have

L2M0 =
⊕
j∈J

L2(Ij, pj(x) dx),

‖u‖2
1,M0

=
∑
j∈J

‖uj‖2
Ij
=
∑
j∈J

∫
Ij

|uj(x)|2pj(x) dx.

We letH1(M0) be the completion of

{u ∈ C(M0)|uj := u �ej∈ C1(Ij)}

where the closure is taken with respect to the norm

‖u‖2
1,M0

:=
∑
j∈J

(‖uj‖2
Ij
+ ‖u′j‖2

Ij
).
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Note that the weakly differentiable functionsH1(Ij) on an interval are continuous, therefore
H1(Ij) ⊂ C(Ij).

Next we associate with the graph a positive quadratic form,

‖u′‖2
M0

:=
∑
j∈J

‖u′j‖2
Ij

for all u ∈ H1(M0). It allows us to define the (differential) Laplacian on the(weighted)
graphM0 as the unique self-adjoint and non-negative operator�M0 associated with the
closed formu �→ ‖u′‖2

M0
(see[12,24]or [7] for details on quadratic forms). In other words,

the operator and the quadratic form are related by

‖u′‖2
M0

= 〈�M0u, u〉 (2.1)

for u ∈ C1(M0) belonging to the domain of�M0. On the edgeej, the operator�M0 is given
formally by

�M0u = − 1

pj(x)
(pj(x)u

′
j)
′. (2.2)

Note that the domain of�M0 consists of all functionsu ∈ C(M0) which are twice weakly
differentiable on each edge. Furthermore, each functionu satisfies (weighted)Kirchhoff
boundary conditions3 at each vertexvk, i.e.,∑

j,ej meetsvk

pj(vk)u
′
j(vk) = 0 (2.3)

for all k ∈ K, where the derivative is taken on each edge in the direction towards to the
vertex. In particular, we assume Neumann boundary conditions at a vertex with only one
edge emanating.4 If we assume thatp is continuous onM0, we can omit the factorspj(vk)
in (2.3). Note that different values ofpj(vk) for j can correspond in our limiting result to
different radii of the thickened edges which are attached to a vertex neighbourhood (see
(4.2)below).

As we have mentioned in the introduction there are other self-adjoint operators which
act according to(2.2) on the graph edges but satisfy different boundary conditions at the
vertices—see[10,13] for details. The corresponding quadratic forms differ from(2.1) by
an extra term. In general there are many admissible boundary conditions; a graph vertex
joining n edges gives rise to a family withn2 real parameters. An example is represented
by the so-calledδ coupling for which the corresponding domain consists of all functions

3 This is the usual terminology, not quite a fortunate one. The name suggests that the probability current at the
vertex obeys the conservation law analogous to Kirchhoff’s law in an electric circuit. While this claim is valid,
the current conservation requirement is equivalent to selfadjointness and thus also satisfied for the other operators
mentioned below.

4 This hypothesis is made for convenience only and our result will not change if it is replaced by any other
boundary condition at the “loose ends”, in particular, by Dirichlet orθ-periodic ones (cf.Section 9.1).
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u ∈ C(M0) which are twice weakly differentiable on each edge, and(2.3) is replaced by∑
j,ej meetsvk

pj(vk)u
′
j(vk) = κu(vk) (2.4)

with a fixedκ ∈ R, whereu(vk) is the common value of all theuj(vk) at the vertex. One
can ask naturally whether such graph Hamiltonians can be obtained from a family of graph-
shaped manifolds. InSection 7we will discuss a particular case of the limiting procedure
leading to the spectrum which—although it doesnot correspond to a graph operator with
the generalized boundary condition described above—is at leastsimilar to that with aδ
coupling. The difference is that in the boundary conditions(2.4) the coupling constantκ
is replaced by a quantity dependent on the spectral parameter, the corresponding operator
being defined not onL2(M0) but on a slightly enlarged Hilbert space—cf.(7.1)–(7.4).

In Section 6we obtain another limit operator due to a different limiting procedure. This
operator is again no graph operator with boundary conditions as above, but decouples and
the graph part corresponds to a fully decoupled operator with Dirichlet boundary conditions
at each vertex.

The spectrum of�M0 is purely discrete. We denote the corresponding eigenvalues by
λk(�M0) = λk(M0), k ∈ N, written in the ascending order and repeated according to multi-
plicity. With this eigenvalue ordering, we can employ themin–max principle(in the present
form it can be found, e.g., in[7]): thekth eigenvalue of�M0 is expressed as

λk(M0) = inf
Lk

sup
u∈Lk\{0}

‖q0(u)‖2

‖u‖2
(2.5)

where the infimum is taken over allk-dimensional subspacesLk ofH1(M0).

2.2. Comparison of eigenvalues

Let us now formulate a simple consequence of the min–max principle which will be
crucial for the proof of our main results. Suppose thatH, H′ are two separable Hilbert
spaces with the norms‖ · ‖ and‖ · ‖′. We need to compare eigenvaluesλk andλ′k of non-
negative operatorsQ andQ′ with purely discrete spectra defined via quadratic formsq and
q′ onD ⊂ H andD′ ⊂ H. We set‖u‖2

Q,n := ‖u‖2 + ‖Qn/2u‖2.

Lemma 2.1. Suppose thatΦ : D −→ D′ is a linear map such that there exist constants
n1, n2 ≥ 0 andδ1, δ2 ≥ 0 such that

‖u‖2 ≤ ‖Φu‖′2 + δ1‖u‖2
Q,n1

(2.6)

q(u) ≥ q′(Φu)− δ2‖u‖2
Q,n2

(2.7)

for all u ∈ D and thatD ⊂ domQmax{n1,n2}/2. Then to each k there is a positive function
ηk given by(2.11)satisfyingηk := η(λk, δ1, δ2) → 0 asδ1, δ2 → 0, such that

λk ≥ λ′k − ηk.
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Proof. Let Φ1, . . . , Φk be an orthonormal system of eigenvectors corresponding to the
eigenvaluesλ1, . . . , λk. Foru in the linear spanEk of ϕ1, . . . , ϕk, we have

‖u‖2
Q,n ≤ (1+ λnk )‖u‖2 (2.8)

and

q′(Φu)

‖Φu‖′2 −
q(u)

‖u‖2
≤
(
q(u)

‖u‖2
δ1‖u‖2

Q,n1
+ δ2‖u‖2

Q,n2

)
1

‖Φu‖′2

≤ (λk(1+ λn1
k )δ1 + (1+ λn2

k )δ2)
‖u‖2

‖Φu‖′2 (2.9)

where we have used(2.6) and(2.7) to get the first inequality and(2.8) to get the second
one. From relation(2.6)we follow

(1− (1+ λn1
k )δ1)‖u‖2 ≤ ‖Φu‖′2 (2.10)

and thus we can estimate the r.h.s. of(2.9)by

ηk := η(λk, δ1, δ2) := λk(1+ λn1
k )δ1 + (1+ λn2

k )δ2
1− (1+ λn1

k )δ1
(2.11)

provided 0≤ δ1 < 1/(1+ λn1
k ). From (2.10) we also conclude that‖u‖ = 0 holds if

‖Φu‖′ = 0, i.e., thatΦ(Ek) is k-dimensional. From the min–max principle applied to the
quadratic formq′ we obtain

λ′k ≤ sup
u∈Ek\{0}

q′(Φu)

‖Φu‖′2 ≤ sup
u∈Ek\{0}

q(u)

‖u‖2
+ ηk = λk + ηk

which is the desired result.�

3. Graph-like manifolds

3.1. Laplacian on a manifold

Throughout this paper we study manifolds of dimensiond ≥ 2. For a Riemannian mani-
fold X (compact or not) without boundary we denote byL2(X) the usualL2-space of square
integrable functions onXwith respect to the volume measure dX onX. In a chart, the volume
measure has the density (detG)1/2 with respect to the Lebesgue measure, where detG is
the determinant of the metric tensorG := (gij) in this chart. The norm ofL2(X) will be
denoted by‖ · ‖X. Foru ∈ C∞c (X), the space of compactly supported smooth functions, we
set

q̌X(u) := ‖du‖2
X =

∫
X

|du|2dX.
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Here the 1-form du denotes the exterior derivative ofu whose squared norm in coordinates
is given by

|du|2 =
∑
i,j

gij∂iu ∂jū = G−1∇u · ∇ū

where (gij) is the component representation of the inverse matrixG−1.
We denote the closure of the non-negative quadratic form ˇqX byqX. Note that the domain

domqX of the closed quadratic formqX consists of functions inL2(X) such that the weak
derivative du is also square integrable, i.e.,qX(u) <∞.

We define theLaplacian�X (for a manifold without boundary) as the unique self-
adjoint and non-negative operator associated with the closed quadratic formqX as in
(2.1).

If X is a compact manifold with piecewise smooth boundary∂X �= ∅ we can define the
Laplacian with Neumann boundary condition via the closureqX of the quadratic form ˇqX
defined onC∞(X), the space of smooth functions with derivatives continuous up to the
boundary ofX. Note that the usual conditions on the normal derivative occurs only in the
operatordomain via the Gauss–Green formula. In a similar way other boundary conditions
at∂Xmay be introduced. The spectrum of�X (with any boundary condition if∂X �= ∅) is
purely discrete as long asX is compact and the boundary conditions are local. We denote
the corresponding eigenvalues byλk(�X) = λk(X), k ∈ N, written in increasing order and
repeated according to multiplicity.

3.2. General estimates on manifolds

We will employ (partial) averaging processes on edge and vertex neighbourhoods which
correspond to projection onto the lowest (transverse) mode. We start with such a general
Poincaŕe-type estimate:

Lemma 3.1. Let X be a connected, compact manifold with smooth boundary∂X.
For u ∈ H1(X) define the constant functionu0(x) := (1/volX)

∫
X
udX. Then we have

‖u0‖2
X ≤ ‖u‖2

X,

‖u− u0‖2
X ≤

1

λN2 (X)
‖du‖2

X and ‖u‖2
X − ‖u0‖2

X ≤
1

δλN2 (X)
+ δ‖u‖2

X

for δ > 0.

Proof. The first inequality follows directly from Cauchy–Schwarz. For the second one,
note thatu− u0 is orthogonal to the first eigenfunction of the Neumann Laplacian. By the
min–max principle we obtain

λN2 (X)‖u− u0‖2
X ≤ ‖d(u− u0)‖2

X = ‖du‖2
X.
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Since it X is connected, we haveλN2 (X) > 0. The last inequality follows from

|‖u‖2 − ‖u0‖2| ≤ 2‖u− u0‖‖u‖ ≤ 1

δ
‖u− u0‖2 + δ‖u‖2 (3.1)

for all δ > 0. �

Next, we need the following continuity of the map which restricts a function onX to the
boundary∂X. To this aim we use standard Sobolev embedding theorems:

Lemma 3.2. There exists a constantc1 > 0depending only on X and themetric g such that

‖u �∂X ‖2
∂X ≤ c1(‖u‖2

X + ‖du‖2
X)

for all u ∈ H1(U).

Proof. See, e.g.,[28]. An alternative proof similar to the proof ofLemma 6.7exists, and
follows easily from(6.20)together with a cut-off function. �

3.3. Definition of the graph-like manifold

For each 0< ε ≤ 1 we associate with the graphM0 a compact and connected Riemannian
manifoldMε of dimensiond ≥ 2 equipped with a metricgε to be specified below. We
suppose thatMε is the union of compact subsetsUε,j andVε,k such that the interiors ofUε,j
andVε,k are mutually disjoint for all possible combinations ofj ∈ J andk ∈ K. We think of
Uε,j as the thickened edgeej and ofVε,k as the thickened vertexvk (seeFigs. 1 and 2). Note
that Fig. 2 describes the situation only roughly, since it assumes thatMε is embedded in
R
ν. More correctly, we should think ofMε as an abstract manifold obtained by identifying

the appropriate boundary parts ofUε,j andVε,k via the connection rules of the graphM0.
This manifold need not to be embedded, but the situation whenMε is a submanifold ofRν

(ν ≥ d) can be viewed also in this abstract context (seeExample 4.1).

Fig. 1. The associated edge and vertex neighbourhoods withF = S1, i.e.,Uε,j andVε,k are two-dimensional
manifolds with boundary.
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Fig. 2. On the left, we have the graphM0, on the right, the associated graph-like manifold (in this case,F = S1

andMε is a two-dimensional manifold).

As a matter of convenience we assume thatUε,j andVε,k are independent ofε as mani-
folds, i.e., only their metricgε depend onε. This can be achieved in the following way: for
the edge regions we assume thatUε,j is diffeomorphic toIj × F for all 0< ε ≤ 1, where
F denotes a compact and connected manifold (with or without a boundary) of dimension
m := d − 1. For the vertex regions we assume that the manifoldVε,k is diffeomorphic to
anε-independent manifoldVk for 0< ε ≤ 1. Pulling back the metrics to the diffeomorphic
manifold we may assume that the underlying differentiable manifold is independent ofε.
Therefore,Uε,j = Uj = Ij × F andVε,k = Vk with anε-depending metricgε.

For further purposes, we need a decomposition ofej ∼= Ij into two halves. We reverse
the orientation of one such half so that each half is directed towards to its adjacent vertex
and collect all halvesIjk ending at the vertexvk, i.e.,j ∈ Jk, where5

Jk := {j ∈ J |ej meetsvk}. (3.2)

We denoteUjk := Ijk × F (and similar notation with subscriptε).
For further references, we denote the midpoint of the edgeej ∼= Ij byx∗j and the endpoint

of Ij corresponding to the edgevk by x0
jk, e.g.,Ijk = [x∗j , x

0
jk].

3.4. Notation

In the sequel, we are going to suppress the edge and vertex subscriptsj andk unless a
misunderstanding may occur. Similarly we set, e.g.,U := U1, in other words we omit the
subscriptε if we only mean the underlyingε-independent manifold with metricg1, i.e., if
we fix ε = 1.

3.5. Motivation for the different limit operators

Let us briefly motivate why the limit operator of�Mε as ε→ 0 should depend on
the volume decay of the vertex neighbourhoodsVε,k in comparison with vold−1∂Vε,k (or
voldUε,j, which is of the same order whenε→ 0 as we will see inSection 4). For simplicity,

5 For each loopej atvk , i.e., each edge beginningandending atvk , we need to replace the labelj by two distinct
labelsj1, j2 belonging toJk in order to collectbothhalfs of the edge.
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we assume that the radius of the transversal direction on the edgeUε,j isε (i.e.,pj ≡ 1). The
assumptions on the edge neighbourhoods will be specified in the next section. We stress that
our aim in this subsection is to present a heuristic idea, not a proof (for a suitable reasoning
cf. [14] or [23]).

Supposeϕ = ϕε is an eigenfunction of�Mε w.r.t. the eigenvalueλ = λε. By the Gauss–
Green formula, we have at the vertexVε = Vε,k

λ

∫
Vε

ϕū,dVε =
∫
Vε

〈dϕ,du〉dVε +
∫
∂Vε

∂nϕūd∂Vε (3.3)

for all u ∈ H1(Mε). Assume thatλε → λ0 andϕε → ϕ0 = (ϕ0,j)j.
If the vertex volume voldVε decays faster than the boundary area vold−1∂Vε only the

boundary integral over∂Vε survives in the limitε→ 0 and leads to

0=
∑
j∈Jk

ϕ′0,j(vk)

which is exactly the Kirchhoff boundary condition mentioned above in(2.3). This fast
decayingvertex volume case will be treated inSection 5.

If the vertex volume decays slower than vold−1∂Vε, the integrals overVε are domi-
nant. In this case, volVε,k � volUε,j and only slowly varying eigenfunctions onVε,k lead
to bounded eigenvaluesλ = λε. Since volVε,k � volUε,j, normalized eigenfunctions are
nearly vanishing onVε,k viewed from the scale onUε,j. This roughly explains, why we end
up with a decoupled operator with Dirichlet boundary conditions onM0 plus extra zero
eigenmodes at the vertices (the zero eigenmodes also survive the limitε→ 0). Thisslowly
decayingvertex volume case will be discussed inSection 6.

In the borderline case when voldVε ≈ vold−1∂Vε, we also expect the eigenfunctions to
vary slowly onVε,k (since voldVε,k → 0), so the integral over〈dϕ du〉 should tend to 0, and
in the limit

λ0ϕ0(vk) =
∑
j∈Jk

ϕ′0,j(vk).

Thisborderline casewill be treated inSection 7.
If vol Vε,k does not tend to 0, i.e., whenVε,k tends to a compactd-dimensional manifold

V0,k without boundary (andnot to a point as in the cases above), we still expect a decoupled
operator with Dirichlet boundary conditions on the edges by the same arguments as in the
slowly decaying case. In addition, not only the lowest eigenmode ofVε,k but all eigenmodes
survive, i.e., the limit operator should consist of the direct sum of all Dirichlet Laplacians
on the edges plus the Laplacians onV0,k, k ∈ K. This non-decayingvertex volume case
will be treated inSection 8.

It requires an extra effort to prove rigorously the conclusions of the above reasoning;
recall that we have assumed, e.g., thatλε → λ0 (which we want to show in this paper) and
‖ϕε‖∞, ‖dϕε‖∞ ≤ c which is in general not true for normalized (L2-)eigenfunctions since
volMε → 0 asε→ 0.
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4. Edge neighbourhoods

4.1. Definition of the thickened edges

Suppose thatU = I × F with metricgε, whereI corresponds to some (part of an) edge
andF denotes (as before) a compact and connected Riemannian manifold of dimensionm =
d − 1 with metrich with or without boundary (we always assume that the corresponding
Laplacian onMε satisfies Neumann boundary conditions on the boundary part coming from
∂F ). For simplicity we assume that volF = 1. We define another metric ˜gε onUε by

g̃ε := dx2 + ε2r2j (x)h(y), (x, y) ∈ Uj = Ij × F (4.1)

where

rj(x) := (pj(x))
1/m (4.2)

defines a smooth function (specifying the radius of the fibre{x} × F at the pointx), where
pj is the density function on the edgeej introduced inSection 2.

We denote byGε andG̃ε thed × d matrices associated to the metricsgε and g̃ε with
respect to the coordinates (x, y) (herey stands for suitable coordinates onF ) and assume
that the two metrics coincide up to an error term asε→ 0, more specifically

Gε = G̃ε +
(

o(1) o(ε)

o(ε) o(ε2)

)
=
(

1+ o(1) o(ε)

o(ε) ε2rj H + o(ε2)

)
, (4.3)

i.e.,

gε,xx = 1+ o(1), gε,xyα = o(ε), gε,yαyβ = ε2r2j (x)hαβ(y)+ o(ε2).

uniformly onU. To summarize, we assume that the metricgε is equal to the product metric
g̃ε up to error terms.

This is a central assumption in our construction which describes how in fact the family of
manifolds shrinks to the graphM0. One of the reasons why we introduce a pair of metrics
will become clear in the following two examples. While our construction uses intrinsic
metric properties of the manifolds only, we want it to be applicable to manifolds embedded
into some Euclidean spaceRν. It will be one of our aims to show that within the prescribed
error margin such a “practically important” metric yields the same result as the product
metric which is easier to handle.

In particular, our results show that the convergence isindependentof the chosen embed-
ding.

Example 4.1 (Embedded graphs). Note that it is impossible to embed our graph neigh-
bourhoodMε if the cylindrical sleeves have thesamelength as the underlying graph edges,
but it can be achieved with the lengthshortenedby a factor of order o(1). In this sense,
we recover the situation treated in[16], i.e.,M0 embedded inR2 andF = [−1,1] andMε
being a suitableε-neighbourhood ofM0.

In the same way, we can treat the graphM0 embedded inR3 withMε being the surface
of some pipeline network (i.e.,F = S1).
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Example 4.2 (Curved edges and variable transversal radius). SupposeUε is the ε-
neighbourhood of a smooth curve�γ = �γj : Ij −→ Rd parameterized by arc-length. If, e.g.,
ν = d = 2 andF = [−1,1] a chart is given by

Ψ : Ij × [−1,1] −→ Uε,j, (x, y) �→ �γ(x)+ εrj(x)y �n(x),

i.e., we thicken the curve�γ in its normal direction�n(x) at the point�γ(x) by the factor
εr(x) = εrj(x). The corresponding metric in (x, y) coordinates is given by

Gε =
(

(1+ εκyr)2 + ε2y2ṙ2 ε2rṙy

ε2rṙy ε2r2

)
=
(

1+O(ε) O(ε2)

O(ε2) ε2r2

)

whereκ := γ̇1γ̈2 − γ̇2γ̈2 is the curvature of the generating curve�γ. Therefore, the error
term o(1) comes from the curvature of the embedded curve�γ whereas the off-diagonal
error terms come from the variable radius of the transversal direction (note that ˙r = 0 if
r(x) is constant). Curvature induced effects in the thin tube limit are well understood—see,
e.g.,[8].

4.2. Estimates on the thickened edges

Following the philosophy explained in the previous subsection, we start with pointwise
estimates where we compare the product metric ˜gε with the original metricgε. Note that
the assumption(4.3), while fully sufficient for our purposes, is optimal in a sense, i.e., that
the following lemma ceases to be valid if we weaken its hypothesis even slightly.

Lemma 4.3. Suppose thatgε, g̃ε are given as in(4.1)and(4.3), then

(detGε)
1/2 = (1+ o(1))(detG̃ε)

1/2 (4.4)

gxxε := (G−1
ε )xx = 1+ o(1) (4.5)

|dxu|2 ≤ (1+ o(1))|du|2gε (4.6)

|dFu|2h ≤ o(ε)|du|2gε (4.7)

wheredx and dF are the(exterior) derivative with respect tox ∈ I and y ∈ F , respectively.
All the estimates are uniform in(x, y) asε→ 0.

Proof. The first equation follows from

det(GεG̃
−1
ε ) = det

(
1+ o(1) o(ε)

o(ε) ε2H + o(ε2)

)(
1 0

0 ε−2H−1

)

= det

(
1+ o(1) o(ε−1)

o(ε) 1+ o(1)

)
= 1+ o(1).
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For the second one, we consider the upper left component of

G−1
ε − G̃−1

ε = −G̃−1
ε (Gε − G̃ε)G̃−1

ε + o(Gε − G̃ε)

=
(

1 0

0 O(ε−2)

)(
o(1) o(ε)

o(ε) o(ε2)

)(
1 0

0 O(ε−2)

)
+ o(1)

=
(

o(1) o(ε−1)

o(ε−1) o(ε−2)

)
.

Inequality(4.6) is equivalent to

(
1 0

0 0

)
≤ (1+ o(1))G−1

ε

in the sense of quadratic forms. This will be true if we show that

(
1 0

0 δ1

)
≤ (1+ o(1))G−1

ε

for someδ > 0, where1 is them×m unit matrix, which in turn means

(1+ o(1))

(
1 0

0 δ−11

)
≥ Gε.

However,

Gε = G̃ε +
(

o(1) o(ε)

o(ε) o(ε2)

)
=
(

1+ o(1) 0

0 O(ε2)

)
+
(

0 o(ε)

o(ε) 0

)

and the eigenvalues of the last matrix are of order o(ε), so

Gε ≤
(

1+ o(1) 0

0 O(ε2)

)
+ o(ε)1 =

(
1+ o(1) 0

0 o(ε)

)
≤ (1+ o(1))

(
1 0

0 c1

)

for some constantc > 0, and therefore it is sufficient to chooseδ < c−1. The proof of
inequality(4.7) is similar. �

4.3. Notation

The tilde in a symbol refers always to the product metric ˜gε. We denote, e.g., bỹUε the
manifoldUε with metricg̃ε and (abusing the notation a little bit) employ the symbolUε for
the manifoldUε with the metricgε.
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As a motivation for the above choice of the metrics, let us calculate the norm ofu ∈
L2(Ũε) for a functionu which is independent of the second argumenty ∈ F , i.e.,u(x, y) =
u(x). This yields

‖u‖2
Ũε
=
∫
Uε

|u|2 dŨε =
∫
I

∫
F

|u(x)|2(detG̃ε)
1/2(x, y) dx dy

= εm
∫
I

|u(x)|2rm(x) dx
∫
F

(detH)1/2(y) dy = εm‖u‖2
Ivol(F ) = εm‖u‖2

I .

(4.8)

4.4. Transversal averaging

We will employ averaging processes on edge neighbourhoodsUε = Uε,j which corre-
spond to projection onto the lowest transverse mode:

Nu(x) = Nju(x) :=
∫
F

u(x, ·) dF (4.9)

Note thatNu(x) is well defined foru ∈ H1(Uε), and moreover,

εm‖Nu‖2
I = ‖Nu‖2

Ũε
≤ ‖u‖2

Ũε
= (1+ o(1))‖Nu‖2

Uε
(4.10)

in view of Eqs.(4.8), (4.4), and the Cauchy–Schwarz inequality.
In the following two lemmas we compare a functionu and its derivative du with the

normal averagesNu and dxNu, respectively. Note that for the next lemma,(4.10) is not
enough; we also need the reverse inequality:

Lemma 4.4. For anyu ∈ H1(Uε) we have

‖u‖2
Uε
− ‖εm/2Nu‖2

I ≤ o(ε1/2)(‖u‖2
Uε
+ ‖du‖2

Uε
).

Proof. Applying Lemma 3.1with X = F we get

‖u(x, ·)‖2
F − |Nu(x)|2 ≤ 1

δλN2 (F )
‖dFu(x, ·)‖2

F + δ‖(x, ·)‖2
F . (4.11)

Next we integrate overIj and obtain

‖u‖2
Ũε
− εm‖Nu‖2

Ij
≤ o(ε)

δλN
2 (F )

∫
Ũε,j

|du|2gεdŨεj + δ‖u‖2
Ũε,j

using estimate(4.7). We putδ := √
o(ε) and apply(4.4)to obtain the result for the manifold

Uε,j. �

Lemma 4.5. For anyu ∈ H1(Uε) we have

‖εm/2(Nu)′‖2
I − ‖du‖2

Uε
≤ o(1)‖du‖2

Uε
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Proof.

‖εm/2(Nu)′‖2
I = ‖εm/2N(dxu)‖2

I ≤ (1+ o(1))‖dxu‖2
Uε

= (1+ o(1))
∫
Uε

|dxu|2 dUε ≤ (1+ o(1))
∫
Uε

|du|2gε dUε

= (1+ o(1))‖du‖2
Uε

holds in view of estimate(4.10)and(4.6). �
Next we need a pointwise estimate on the behaviour ofNu at the boundary.

Lemma 4.6. We have

|Nu(x0)|2 ≤ o(ε−m)(‖u‖2
Uε
+ ‖du‖2

Uε
)

for all u ∈ H1(Uε), wherex0 ∈ ∂I.
Proof. One estimates

|Nu(x0)|2 ≤
∫
F

|u(x0, y)|2 dF (y) ≤ c1(‖u‖2
U + ‖dxu‖2

U )

≤ o(ε−m)(‖u‖2
Uε
+ ‖du‖2

Uε
)

by Lemma 3.2with X = U, (4.6)and(4.4). �

5. Fast decaying vertex volume

5.1. Definition of the thickened vertices

Remember thatVε,k = Vk as manifold, whereasgε denotes theε-depending metric on
Vε,k. Let g := g1, then we assume that

c−ε2g ≤ gε ≤ c+ε2αg (5.1)

in the sense that there are constantsc−, c+ > 0 such that

c−ε2g(x)(v, v) ≤ gε(x)(v, v) ≤ c+ε2αg(x)(v, v)

for all v ∈ TxVk and allx ∈ Vk. The numberα in the exponent is assumed to satisfy the
inequalities

d − 1

d
< α ≤ 1; (5.2)

notice thatα ≤ 1 is needed for(5.1)to make sense with 0< ε ≤ 1. Thus the edge and vertex
parts of the manifold need not shrink at the same rate but the vertex shrinking should not
be too slow than that of the edges. This hypothesis expressed by(5.1)plays a central r̂ole
here; other shrinking regimes will be discussed in the following sections.
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Note that the manifoldVε,k shrinks at most asε (in each direction) by the lower bound in
(5.1). This ensures that a globalsmoothmetricgε exists onMε with the requirements onUε,j
andVε,k. Therefore, we do not need an intermediate part (calledbottle neck) between the
edge and vertex neighbourhoods interpolating between the different scalings as inSections
6 and 7.

We easily obtain the following global estimate from(5.1):

Lemma 5.1. There arec±1 , c
±
2 > 0 such that

c−1 ε
d‖u‖2

V ≤ ‖u‖2
Vε
≤ c+1 εαd‖u‖2

V (5.3)

c−2 ε
d−2α‖du‖2

V ≤ ‖du‖2
Vε
≤ c+2 εαd−2‖du‖2

V (5.4)

for all u ∈ H1(Vε) = H1(V ).

5.2. Convergence of the spectra

The limit operator will concentrate only on the edge part in this case, therefore we define

H0 := L2(M0), D0 := H1(M0), q0(u) := ‖u′‖2
M0

=
∑
j

‖u′j‖2
Ij
, (5.5)

i.e., the limit operatorQ0 is�M0 (see Def.(2.2)). If the transversal manifoldF has boundary,
we assume that�Mε satisfies Neumann boundary conditions. With the above preliminaries
we can finally formulate the main result of this section:

Theorem 5.2. Under the stated assumptionsλk(Mε) → λk(M0) asε→ 0.

Recall that the eigenvaluesλk(Mε) are by assumption ordered in the ascending order,
multiplicity taken into account, so the label of a particular eigenvalue curve may change as
εmoves. The spectrum of the Laplacian onMε is in general richer than that of the graph and
a part of the eigenvalues escapes to+∞ asε→ 0; the proof presented below shows that
this happens, roughly speaking, for all states with the transverse part of the eigenfunction
orthogonal to the ground state.

Our aim is to find a two sided estimate on each eigenvalueλk(Mε) by means ofλk(M0)
with an error which is o(1) w.r.t. the parameterε.

5.3. An upper bound

The mentioned upper eigenvalue estimate now reads as follows:

Theorem 5.3. λk(Mε) ≤ λk(M0)+ o(1)holds asε→ 0.

To prove it, we define the transition operator by

Φεu(z) :=
{
ε−m/2u(vk) if z ∈ Vk,
ε−m/2uj(x) if z = (x, y) ∈ Uj

(5.6)

for anyu ∈ H1(M0). Theorem 5.3is then implied byLemma 2.1in combination with the
following result.
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Lemma 5.4. We haveΦεu ∈ H1(Mε), i.e., Φε maps the quadratic form domain of the
Laplacian on the graph into the quadratic form domain of the Laplacian on the manifold.
Furthermore, foru ∈ H1(M0) we have

‖u‖2
M0
− ‖Φεu‖2

Mε
≤ o(1)‖u‖2

M0
(5.7)

‖dΦεu‖2
Mε
− q0(u) = o(1)q0(u). (5.8)

Proof. The first assertion is true sinceΦεu is constant on each thickened vertexVε,k and
continuous on∂Vε,k. Clearly,Φεu is weakly differentiable on each thickened edgeUε,j.
Moreover, we have

‖u‖2
M0
− ‖Φεu‖2

Mε
≤
∑
j∈J

(‖u‖2
Ij
− ‖Φεu‖2

Uε,j
)

=
∑
j∈J

(‖u‖2
Ij
− (1+ o(1))‖Φεu‖2

Ũε,j
)

= o(1)
∑
j∈J

‖u‖2
Ij
= o(1)‖u‖2

M0

where we have neglected the contribution to the norm ofΦεu from the vertex parts ofMε
and employed Eqs.(4.4) and (4.8). The second relation follows from

‖dΦεu‖2
Mε
− q0(u) =

∑
j∈J

((1+ o(1))‖gxxε dxΦεu‖2
Ũε,j

− ‖u′‖2
Ij

)

=
∑
j∈J

((1+ o(1))‖u′‖2
Ij
− ‖u′‖2

Ij
) = o(1)q0(u)

in the same way as above and with(4.5); recall thatΦεu is constant onVε,k and independent
of y ∈ F onUε,j. �

5.4. A lower bound

The reverse estimate is more difficult. Here, we will also employ averaging processes on
the vertex neighbourhoodsVε,k which correspond to projection onto the lowest (constant)
mode:

Cu = Cku := 1

volVk

∫
Vk

udVk. (5.9)

Recall thatV = Vk denotes the manifoldVk with the metricg = g1 (seeRemark 5.7for the
reason why we useVk instead ofVε,k).

Lemma 5.5. The inequality

|Cku−Nju(x0)|2 ≤ O(ε2α−d)‖du‖2
Vε,k

holds for allu ∈ H1(Vε,k) where the pointx0 = x0
jk ∈ ∂Ij corresponds to the vertexvk.
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Proof.

|Cku−Nju(x0)|2 ≤
∫
F

|Cku− u(x0, y)|2 dF (y) ≤ c1(‖Cku− u‖2
Vk
+ ‖du‖2

Vk
)

≤ c1
(

1

λN
2 (Vk)

+ 1

)
‖du‖2

Vk
≤ O(ε2α−d)‖du‖2

Vε,k

holds byLemmas 3.2 and 3.1with X = Vk and metricg = g1, andLemma 5.1. �
Lemma 5.6. We have

‖u− Cu‖2
Vε
≤ O(εβ)‖du‖2

Vε

for all u ∈ H1(Vε), whereβ := (2+ d)α− d.

Proof. Using againLemmas 3.1 and 5.1we infer

‖u− Cu‖2
Vε
≤ c+1 εαd‖u− Cu‖2

V ≤ c+1 εαd
1

λN
2 (V )

‖du‖2
V ≤ O(εαd−d+2α)‖du‖2

Vε
.

Notice thatβ > 0 is equivalent toα > d/(d + 2) and the last inequality is satisfied due to
(5.2)and the fact thatd ≥ 2 holds by assumption.�

Remark 5.7. For Lemma 5.6, the “natural” averagingCεu := ∫
Vε
udVε would yield the

same result whereasLemma 5.5leads to the estimate O(εβ−d) which is worse since 2α > β.

We conclude that in the fast decaying case the edge neighbourhoods lead to no spectral
contribution in the limitε→ 0:

Corollary 5.8. The inequality

‖u‖2
Vε
≤ O(εαd−m)(‖u‖2

Uε∪Vε + ‖du‖2
Uε∪Vε )

holds true for allu ∈ H1(Uε ∪ Vε).

Proof. We start from the telescopic estimate

‖u‖Vε ≤ ‖u− Cu‖Vε + ‖Cu−Nu(x0)‖Vε + ‖Nu(x0)‖Vε
≤ O(εβ/2)‖du‖Vε + (volVε)

1/2
(
O(ε(2α−d)/2)‖du‖2

Vε

+O(ε−m/2)(‖u‖2
Uε
+ ‖du‖2

Uε
)
)1/2

= O(ε(αd−m)/2)(‖u‖2
Uε∪Vε + ‖du‖2

Uε∪Vε )
1/2

where we have usedLemmas 4.6, 5.5, and 5.6, and furthermore the inequality(5.3)to obtain
volVε = O(εαd). Finally, note thatβ = (d + 2)α− d > αd −m > 0 and thatαd −m > 0
is equivalent to assumption(5.2). �
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Now we define the transition operator by

(Ψεu)j(x) := εm/2(Nju(x)+ ρ(x))(Cku−Nju(x0)), for x ∈ Ijk (5.10)

whereρ : R −→ [0,1] is a smooth function such that

ρ(x0) = 1 and ρ(x) = 0, for all |x− x0| ≥ 1
2min
j∈J
�j (5.11)

where�j denotes the length of the edgeej ∼= Ij. Furthermore,x0 = x0
jk ∈ ∂Ij is the edge

point which can be identified with the vertexvk. Recall thatIjk denotes the (closed) half of
the intervalIj ∼= ej adjacent with the vertexvk and directed towards tovk.

Lemma 5.9. We haveΨεu ∈ H1(M0) if u ∈ H1(Mε). Furthermore,

‖u‖2
Mε
− ‖Ψεu‖2

M0
≤ o(1)(‖u‖2

Mε
+ ‖du‖2

Mε
) (5.12)

q0(Ψεu)− ‖du‖2
Mε

≤ o(1)(‖u‖2
Mε
+ ‖du‖2

Mε
) (5.13)

for all u ∈ H1(Mε).

Proof. The first assertion follows from (Ψεu)j(x0
jk) = Cku. Furthermore, we have

‖u‖2
Mε
− ‖Ψεu‖2

M0

≤
∑
k∈K


‖u‖2

Vε,k
+
∑
j∈Jk

(‖u‖2
Uε,jk

− εm‖Nu+ ρ · (Cu−Nu(x0))‖2
Ijk

)




≤
∑
k∈K


‖u‖2

Vε,k
+
∑
j∈Jk

(‖u‖2
Uε,jk

− ‖εm/2Nu‖2
Ijk

)

+
∑
j∈Jk

(δ‖εm/2Nu‖2
Ijk
+ εmδ−1‖ρ‖2

Ijk
|Cu−Nu(x0)|2)




where we have used the inequality

(a+ b)2 ≥ (1− δ)a2 − 1

δ
b2, δ > 0. (5.14)

The last term in the sum can be estimated by O(εm)δ−1|Cu−Nu(x0)|2. Applying Lemma
5.5 we arrive at the bound O(εm+2α−d)δ−1(‖u‖2

Mε
+ ‖du‖2

Mε
). Note thatm+ 2α− d =

2α− 1> 0 sinceα > 1/2. Setδ := ε(2α−1)/2. The remaining terms can be estimated by
Corollary 5.8, Lemma 4.4, and estimate(4.10).

The second inequality can be proven in the same way, namely

q0(Ψεu)− ‖du‖2
Mε

≤
∑
k∈K
j∈Jk

(
εm‖(Nu)′ + ρ′ · (Cu−Nu(x0))‖2

Ijk
− ‖du‖2

Uε,jk

)
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≤
∑
k∈K
j∈Jk

(
‖εm/2(Nu)′‖2

Ijk
− ‖du‖2

Uε,jk
+ δ‖εm/2(Nu)′‖2

Ijk

+ 2εm

δ
‖ρ′‖2

Ijk
|Cu−Nu(x0)|2

)
where we have used

(a+ b)2 ≤ (1+ δ)a2 + 2

δb2
, 0< δ ≤ 1, (5.15)

with δ := ε(2α−1)/2. Since the norm involvingρ′ is a fixed constant, the result follows from
Lemmas 4.5andLemma 5.5. �

UsingLemma 5.9we arrive at the sought lower bound. Note that the error termηk in
(2.11)can be estimated by someε-independent quantity becauseλk = λk(Mε) ≤ ck by the
upper bound given inTheorem 5.3.

Theorem 5.10.We haveλk(M0) ≤ λk(Mε)+ o(1).

Theorem 5.2now follows easily by combining the last result withTheorem 5.3.

6. Slowly decaying vertex volume

If the volume of the vertex region decays significantly slower than the volume of the edge
neighbourhoods, the limit operator is different. At the ends of the edges we have Dirichlet
boundary conditions, whereas for each vertexvk,k ∈ K, we obtain an additional eigenmode.
In other words, we add a point measure at each vertex to the given measure on the graph
M0; the corresponding Hilbert space and quadratic form (domain) is therefore given by

H0 := L2(M0)⊕ CK, D0 :=
⊕
j

◦
H(Ij)⊕ CK, q0(u) :=

∑
j

‖u′j‖2
Ij
.

(6.1)

For elements ofH0 we write u = ((uj)j∈J , (uk)k∈K), whereuj ∈ L2(Ij, pj(x)dx) and
uk ∈ C. We sometimes omit the indices and simply writeu instead ofuj. Note that the
point contributionsuk do not occur in the quadratic form, i.e., the additional eigenmodes
have zero energy. Furthermore, the associated operator

Q0 :=
⊕
j∈J

�D
Ij
⊕ 0

corresponds to a fully decoupled graph, i.e., a collection of independent edges, and its
spectrum consists of all Dirichlet eigenvalues of the intervalsIj and 0. Here,0 corresponds
to the zero operator onCK.

In order to define assumptions such that a smooth metricgε exists globally with different
length scalings on the vertex and edge neighbourhoods, we need to introduce some additional
notation (seeFig. 3): let V−k be a closed submanifold ofVk of the same dimension with
a positive distance from all adjacent edge neighbourhoodsUjk, j ∈ Jk. Furthermore, we
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Fig. 3. The decomposition with the different scaling areas.

assume that the cylindrical structure of the half vertex neighbourhoodUjk extends to the
component ofVk \ V−k , whereUjk meetsVk, i.e., the closure ofVk \ V−k is diffeomorphic to
the disjoint union of cylinders [0,1]× F . We denote the extended cylinder containingUjk
together with the corresponding cylindrical end (thebottle neck) ofVk byU+jk = I+jk × F and

the bottle neck alone byAjk = I0
jk × F . Note thatAjk = U+jk ∩ Vk and thatI+jk = Ij ∪ I0

jk.
Again, we use the subscriptε to indicate the corresponding Riemannian manifold with

metricgε.

6.1. Assumption on the smaller vertex neighbourhood

We first fix the scaling behaviour on the smaller vertex neighbourhoodV−k . Here, we
assume that

c−ε2αg ≤ gε ≤ c+ε2α′g onV−k (6.2)

(for the notation see(5.1)) where

0< α <
d − 1

d
, (6.3)

i.e.,V−ε,k scales at most asεα in each direction and at least asεα
′
where

d

d + 2
α < α′ ≤ α, (6.4)

e.g., a homogeneous scaling (α′ = α) would do. Note thatα′ ≤ α is necessary in order that
(6.2) makes sense whereasαd/(d + 2)< α′ ensures that the second Neumann eigenvalue
of V−ε tends to∞ as we will need inLemma 6.5.

6.2. Assumptions on the bottle neck

Roughly speaking, we have to avoid that the bottle neck has more than a single neck
separatingVε,k in more than one part asε→ 0. In that case more than one zero eigenmode
occur in the limit.
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We use the same notation as inSection 4for the metricgε on the bottle neckA = Ajk
and set

g̃ε := a2
ε(x)dx

2 + r2ε (x)h(y), (x, y) ∈ A = I0 × F (6.5)

for the (pure) product metric onA. Here,aε = aε,jk and rε = rε,jk are strictly positive
smooth functions. Note thatrε defines the radius of the fibre{x} × F at the pointx. Again,
we denote byGε andG̃ε thed × d matrices associated to the metricsgε andg̃ε with respect
to the coordinates (x, y) ∈ I0 × F and assume that the two metrics coincide up to an error
term asε→ 0, more specifically

Gε = G̃ε +
(

o(a2
ε) o(aεrε)

o(aεrε) o(r2ε )

)
=
(

(1+ o(1))a2
ε o(aεrε)

o(aεrε) (H + o(1))r2ε

)
, (6.6)

uniformly onA.
We prove the following lemma in the same way asLemma 4.3:

Lemma 6.1. Suppose thatgε, g̃ε are given as above then

(detGε)
1/2 = (1+ o(1)) (detG̃ε)

1/2 (6.7)

gxxε := (G−1
ε )xx = a−2

ε (1+ o(1)) (6.8)

a−2
ε |dxu|2 ≤ O(1)|du|2gε (6.9)

wheredx denotes the partial derivative with respect tox.

To make a smooth junction between the metrics onUj andV−k possible, we assume that

aε(x) = εα, rε(x) = εα nearx+

aε(x) = 1, rε(x) = εr− nearx0

wherex ∈ I0 = [x+, x0] andr− := rj(x0) (the radius of the fibre atx0, see alsoEq. (4.1)).
Furthermore, we assume that

aε(x) ≤
{
εα on [x+, x0 − δ0, ]
1 on [x0 − δ0, x0]

, εr− ≤ rε(x) ≤
{
εα on [x+, x+ + δ+]

εr+ on [x+ + δ+, x0]

(6.10)

for some constantr+ ≥ r−, whereδ0 = εα andδ+ = ε(1−α)m = εαεm−αd (cf. Fig. 4). These
assumptions are needed inLemma 6.7, e.g., to assure that the eigenfunctions ofMε do not
concentrate onAε,jk (i.e., (6.18)holds).

6.3. Convergence of the spectra

With the above prerequisites we can finally formulate the main result of this section:
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Fig. 4. The functionsaε andrε in its allowed range (in grey).

Theorem 6.2. Under the stated assumptionsλk(Mε) → λk(Q0) asε→ 0.More precisely,
the first|K| eigenvalues tend to0,while the remaining bounded eigenvalue branches tend
to Dirichlet eigenvalues of the intervalsIj, i.e.,

λk(Mε) → 0 if 1 ≤ k ≤ |K| (6.11)

λk(Mε) → λD
k−|K|


 •⋃
j∈J
Ij


 if k > |K|, (6.12)

whereλD
n (∪̇j∈J Ij) denotes the Dirichlet eigenvaluesλD

l (�Ij ) of the operators onIj (j ∈ J)
defined as in(2.2), reordered with respect to multiplicity. In particular, if the length of all
the edgesIj is � andpj(x) = 1 for all j, we have

λk(Mε) → λD
m([0, �]) = π2m2/�2 if k = (m− 1)|J | + 1, . . . , m|J |. (6.13)

Again, our aim is to find a two sided estimate on each eigenvalueλk(Mε) by means of
λk(Q0) with an error which is o(1) w.r.t. the parameterε.

6.4. An upper bound

The following upper eigenvalue estimate is slightly more difficult to show than in the
previous section:

Theorem 6.3. λk(Mε) ≤ λk(Q0)+ o(1)holds asε→ 0.

To prove it, we define the transition operator by

Φεu(z) :=
{

(volV−ε,k)
−1/2uk if z ∈ Vk,

ε−m/2uj(x)+ (volV−ε,k)
−1/2ρ(x)uk if z = (x, y) ∈ Uj

for anyu ∈ D0, whereρ is a smooth function as in(5.11)andx0 = x0
jk denotes the endpoint

of the half-edgeIjk corresponding to the vertexvk. Theorem 6.3is then implied byLemma
2.1 in combination with the following result.

Lemma 6.4. We haveΦεu ∈ H1(Mε), i.e.,Φε maps the quadratic form domainD0 into
the quadratic form domain of the Laplacian on the manifold. Furthermore,

‖u‖2
H0
− ‖Φεu‖2

Mε
≤ o(1)‖u‖2

H0
(6.14)
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‖dΦεu‖2
Mε
− q0(u) ≤ o(1) (‖u‖2

H0
+ q0(u)) (6.15)

Proof. Sinceuj �∂Ij= 0, the functionΦεu agrees on∂Vε,k for both definitions. Clearly,
Φεu is weakly differentiable on each thickened edgeUε,j. Moreover, we have

‖u‖2
H0
−‖Φεu‖2

Mε
≤
∑
k∈K
j∈Jk

((
‖u‖2

Ijk
− (1+o(1))‖ε−(m/2)u+(volV−ε,k)

−(1/2)ρ uk‖2
Ũε,jk

)

+ (|uk|2 − ‖Φεu‖2
V−
ε,k

)

)

where we have used Eq.(4.4) and thatV−ε,k ⊂ Vε,k. Note that the latter sum in the last line
is equal to 0. To estimate the remaining sum, remember thatΦεu is independent ofy on
Uε,jk. Therefore we can apply Eq.(4.8), and inequality(5.14)with δ := ε(m−αd)/2 yields
the upper estimate

∑
k∈K
j∈Jk

(
(δ+ o(1))‖u‖2

Ijk
+ O(εm−αd)

δ
|uk|2

)
= o(1)‖u‖2

H0
.

In the last inequality, we have used the estimate (volV−ε,k)
−1 ≤ o(ε−αd) which follows from

the lower bound of(6.2). Note thatδ = o(1) by assumption(6.3). The second relation
follows from

‖dΦεu‖2
Mε
− q0(u)

=
∑
k∈K
j∈Jk

((1+ o(1))εm‖ε−m/2u′ + (volV−ε,k)
−1/2ρ′ uk‖2

Ijk
− ‖u′‖2

Ijk
)

≤
∑
k∈K
j∈Jk

(1+ o(1))

(
δ‖u′‖2

Ijk
+ 2εm

δvolV−ε,k
‖ρ′‖2

Ijk
|uk|2

)
≤ o(1)(‖u‖2

H0
+ q0(u))

in the same way as above together with(4.5) for the second equality and(5.15)in the last
line; recall thatΦεu is constant onVε,k. �

Note that we need a counterpart to‖u‖2
Vε,k

on the limit Hilbert spaceH0. In the case of a
fast decaying vertex volume in the previous section, the corresponding norm vanished (see
Corollary 5.8), but here we need the additional subspaceCK inH0 coming from extra point
measures at the vertices.

Furthermore, note that the upper bound estimate onλk(Mε) already proven inLemma
5.4remains valid in this setting, but it is too rough for the present purpose.
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6.5. A lower bound

Again, the reverse estimate is more difficult. We will employ averaging processes also
on the vertex neighbourhoods; this time with theε-scaled manifoldV−ε,k:

C−ε u = C−ε,ku := 1

volV−ε,k

∫
V−
ε,k

udV−ε,k. (6.16)

In the first lemma, we prove an estimate similar to the one inLemma 5.6. Note that
‖C−ε u‖ ≤ ‖u‖ by Cauchy–Schwarz, but we need the reverse inequality.

Lemma 6.5. For anyu ∈ H1(V−ε ) we have

‖u‖2
V−ε

− ‖C−ε u‖2
V−ε ≤ o(1)(‖u‖2

V−ε
+ ‖du‖2

V−ε
).

Proof. Apply Lemma 3.1with X = V−ε andδ = ε((d+2)α′−dα)/2. From the min–max prin-
ciple we obtainλN

2 (V−ε ) ≥ O(εd(α−α′)−2α′ ). Note thatδ = o(1) since (d + 2)α′ − dα > 0
by (6.4). �

The next three results are valid independently of the assumptions onα given in (6.3)
and(6.4). We will need these results also for the borderline caseα = (d − 1)/d in the next
section.

We need an estimate on the average|Nu(x0)|2. Since on the bottle neckAε,jk, the
estimates are quite delicate, we first prove the result for|Nu(x+)|2 (i.e., on∂V−ε,k), where
the scaling of the metric is of the right order. The error is controlled by(6.17). Note that this
estimate is a counterpart to the estimate inLemma 4.6where we extended the function to the
edgeneighbourhoodUε,j (useful in the case of fast decaying vertex volume,αd −m > 0).
This is not possible here, sinceαd −m < 0. Therefore, we extend the function to thevertex
neighbourhoodV−ε,k.

Lemma 6.6. The inequality

|Nu(x+)|2 ≤ ‖u(x+, ·)‖2
F ≤ O(ε−αd) (‖u‖2

V−ε
+ ‖du‖2

V−ε
)

holds for anyu ∈ H1(V−ε ).

Proof. We have

|Nu(x+)|2 ≤
∫
F

|u(x+, y)|2dF (y) ≤ c1(‖u‖2
V− + ‖du‖2

V− )

≤ O(ε−αd)(‖u‖2
V−ε

+ ‖du‖2
V−ε

)

by Lemma 3.2 withX = V− and the lower bound in assumption(6.3). �

The next lemma is the key ingredient in dealing with the bottle neck. Here, we prove
two Poincaŕe-like estimates. Since we want to avoid a cut-off function (leading to divergent
terms when being differentiated) we only prove an estimate on thedifferenceand not on
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Nu(x0) itself in (6.17). For the same reason, an integral overF remains in(6.18). Note that
I+ε (x0) = volAε.

Lemma 6.7. There is a constantC > 0 such that

|Nu(x0)−Nu(x+)|2 ≤ CI−ε (x0) ‖du‖2
Aε
, (6.17)

‖u‖2
Aε
≤ 4I+ε (x0) ‖u(x+, ·)‖2

F + 4CI+−ε ‖du‖2
Aε

(6.18)

for all u ∈ H1(Aε), where

I±ε (x) :=
∫ x

x+
aε(x

′)r±mε (x′) dx′ and I+−ε :=
∫ x0

x+
aε(x)r

m
ε (x)I−ε (x) dx.

Furthermore, under the assumption(6.10), we have

I−ε (x0) = o(ε−m), I+ε (x0) = o(εαd) and I+−ε = o(1).

Proof. For a smooth functionu we have

u(x, y)− u(x+, y) =
∫ x

x+
∂xu(x′, y) dx′. (6.19)

For the first assertion, we setx = x0, foremost integrate overy ∈ F and then apply Cauchy–
Schwarz

|Nu(x0)−Nu(x+)|2 ≤
∫
F

∫ x0

x+
a2
ε(x

′) detGε(x
′, y)−

1
2 dx′

×
∫ x0

x+
a−2
ε (x′)|∂xu(x′, y)|2 detGε(x

′, y)1/2 dx′ dF (y).

The first integrand overx′ can be estimated byCaε(x′)r−mε applying(6.7). Therefore, the
first integral is smaller thanCI−ε (x0). The second integral together with the integral overF

can be estimated by O(1)‖du‖2
Aε

applying(6.9).
For the second assertion, we first apply Cauchy–Schwarz (and(5.15) with δ = 1) to

(6.19)and than integrate overy ∈ F to obtain∫
F

|u(x, y)|2 dF (y) ≤ 2
∫
F

|u(x+, y)|2 dF (y)+ 2
∫
F

∫ x

x+
a2
ε(x

′) detG(x′, y)−1/2 dx′

×
∫ x

x+
a−2
ε (x′) |∂xu(x′, y)|2 detG(x′, y)1/2 dx′ dF (y). (6.20)

The first integral overx′ can be estimated as before byCI−ε (x). Finally, multiplying with
aε(x)rmε (x) and integrating overx ∈ I0 yields

‖u‖2
Ãε
≤ 2I+ε (x0) ‖u(x+, ·)‖2

F + 2CI+−ε ‖du‖2
Aε
.
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Applying (6.7)once more we obtain the desired estimate overAε instead ofÃε (note that
2/(1+ o(1))≤ 4 providedε is small enough). The general case of non-smooth functions
can easily shown with approximation arguments.

The integral estimates follow from

I−ε (x0) ≤
∫ x0−δ0

x+
εα(εr−)−m dx+

∫ x0

x0−δ0
(εr−)−m dx = (εα + δ0)O(ε−m).

Sinceδ0 = εα, we haveI−ε (x0) ≤ O(εα−m). Next, we have

I+ε (x0) ≤
∫ x++δ+

x+
εαεαm dx+

∫ x0−δ0

x++δ+
εα(εr+)m dx+

∫ x0

x0−δ0
(εr+)m dx

= δ+O(εαd)+ (εα + δ0)O(εm)

and thereforeI+ε (x0) ≤ O(εα+m) = O(εα+m−αd)O(εαd) sinceδ+ = εαεm−αd . The last as-
sertion follows fromI+−ε ≤ I−ε (x0) I+ε (x0) ≤ O(ε2α). �

The following corollary is again independent of the assumption we made aboutα

in (6.3) and (6.4), in particular, it is also valid in the setting of the borderline case of
Section 7.

Corollary 6.8. For all u ∈ H1(Vε) we have

‖u‖2
Aε
≤ o(1)(‖u‖2

Vε
+ ‖du‖2

Vε
).

Proof. We only have to put together(6.18)andLemma 6.6. �
We now formulate a consequence of the preceding lemmas under the assumption(6.3).

Corollary 6.9. Suppose0< α < m/d = (d − 1)/d. Then we have

|Nu(x0)|2 ≤ o(ε−m) (‖u‖2
Vε
+ ‖du‖2

Vε
)

for all u ∈ H1(Vε).

Proof. Applying (5.14)with δ = 1/2 to (6.17)we obtain

|Nu(x0)|2 ≤ o(ε−m)‖du‖2
Aε
+ 4|Nu(x+)|2.

The second term is of order O(ε−αd) by Lemma 6.6and therefore also of order o(ε−m)
by the assumption onα. �

In this section, we define the transition operator by

(Ψεu)j(x) := εm/2Nju(x)− ρ(x)Nju(x0), for x ∈ Ijk,
(Ψεu)k := (volV−ε,k)

1/2C−ε,ku (6.21)
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whereρ is a smooth function as in(5.11)andx0 = x0
jk denotes the endpoint of the half-edge

Ijk corresponding to the vertexvk.

Lemma 6.10. We haveΨεu ∈ D0 if u ∈ H1(Mε). Furthermore,

‖u‖2
Mε
− ‖Ψεu‖2

H0
≤ o(1)(‖u‖2

Mε
+ ‖du‖2

Mε
) (6.22)

q0(Ψεu)− ‖du‖2
Mε

≤ o(1)(‖u‖2
Mε
+ ‖du‖2

Mε
) (6.23)

for all u ∈ H1(Mε).

Proof. The first assertion follows from the fact that (Ψεu)j(x0) = 0. Furthermore, we have

‖u‖2
Mε
− ‖Ψεu‖2

H0
≤
∑
k∈K


(‖u‖2

V−
ε,k

− ‖C−ε u‖2
V−
ε,k

)

+
∑
j∈Jk

(
‖u‖2

Aε,jk
+ ‖u‖2

Uε,jk
− εm‖Nu− ρNu(x0)‖Ijk

) .
The first difference is of the desired form byLemma 6.5. Furthermore, the integral over the
“bottle necks”Aε,jk can be estimated in the needed way byCorollary 6.8. Applying (5.14)
to the remaining difference in the last sum we obtain the upper estimate by

(‖u‖2
Uε,jk

− εm‖Nu‖2
Ijk

)+ δ εm‖Nu‖2
Ijk
+ ε

m

δ
‖ρ‖2

Ijk
|Nu(x0)|2 (6.24)

For the first two terms we obtain the sought bound by virtue ofLemma 4.4 and (4.10);
for the remaining term one has to applyCorollary 6.9.

The second inequality can be proven in the same way, namely

q0(Ψεu)− ‖du‖2
Mε

=
∑
k∈K


−‖du‖2

V−
ε,k

+
∑
j∈Jk

(εm‖(Nu)′ − ρ′Nu(x0)‖2
Ijk
− ‖du‖2

Uε,jk
)




We omit the norm contribution fromV−ε,k and estimate the remaining difference with(5.15)
and obtain (up to the summation)

(εm‖(Nu)′‖2
Ijk
− ‖du‖2

Uε,jk
)+ δ εm‖(Nu)′‖2

Ijk
+ 2

εm

δ
‖ρ′‖2

Ijk
|Nu(x0)|2.

For the first difference we obtain the needed estimate by virtue ofLemma 4.5. An upper
bound for the remaining term is of the same form as before.�

Using Lemma 6.10we arrive at the sought lower bound. Note that the error termηk
in (2.11)can be estimated by someε-independent quantity becauseλk = λk(Mε) ≤ ck by
Theorem 6.3. �

Theorem 6.11.We haveλk(Q0) ≤ λk(Mε)+ o(1).

Theorem 6.2now follows easily by combining the last result withTheorem 6.3.
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7. The borderline case

7.1. Definition of the thickened vertices

If the volume of the vertex region decays at the same rate as the volume of the edge
neighbourhoods, the limit operator acts again in the extended Hilbert space introduced in
the previous section but it is not decoupled anymore. Thus it is not supported by the graph
alone, in particular, it is not the Hamiltonian with the boundary conditions(2.4).

We start with the definition of the limit operator. The corresponding Hilbert space and
quadratic form are given by

H0 := L2(M0)⊕ CK, q0(u) :=
∑
j

‖u′j‖2
Ij
, (7.1)

where the form domainD0 of q0 is given by those functionsu = ((uj)j∈J , (uk)k∈K) such
that

u ∈ H1(M0)⊕ CK and (volV−k )1/2uj(vk) = uk (7.2)

for all j ∈ Jk andk ∈ K, i.e., values of the functions at the edge endpointsvk ≡ x0
jk are now

coupled with the additional wave function components; recall thatV−k denotes the manifold
V−ε,k with ε = 1. The corresponding operatorQ0 is given by

Q0u =

(− 1

pj
(pju

′
j)
′
)
j

,


(volV−k )−(1/2)

∑
j∈Jk

pj(vk)u
′
j(vk)



k


 ; (7.3)

it depends parametrically on vol(V−k ) but we refrain from marking this fact explicitly. Again,
this operator has a purely discrete spectrum provided the graphM0 is finite.

As we have said,Q0 is not a graph operator with the conditions(2.4). Nevertheless,
there is a similarity between the two noticed by Kuchment and Zeng in[17]. To solve the
spectral problemQ0u = λu one has to find (uj)j∈J such that−(pju′j)

′/pj = λuj and at
the vertices the functions satisfy the conditions∑

j∈Jk
pj(vk)u

′
j(vk) = λ(volV−k )u(vk) . (7.4)

This looks like(2.4), the difference is that the coefficient at the right-hand side is not a
constant but a multiple of the spectral parameter; in physical terms one may say that the
coupling strength at a vertex is proportional to the energy.

After this digression let us return to the limiting properties. We adopt again the assumption
(6.10) in this section. Instead of(6.2) we suppose now that on the vertex neighbourhood
the metric satisfies the relation

gε = ε2αg+ o(ε2α) onV−k (7.5)

with

α = d − 1

d
, (7.6)
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which corresponds to the above mentioned equal decay rate for the volume of the edge and
vertex neighbourhoods. In particular, we have

‖u‖2
V−ε

= εαd(1+ o(1))‖u‖2
V− and ‖du‖2

V−ε
= εα(d−2)(1+ o(1))‖du‖2

V− (7.7)

and

vol (V−ε ) = εαd(1+ o(1))vol (V−) (7.8)

for eachV− = V−k as inLemmas 4.3 and 5.1.

7.2. Convergence of the spectra

With the above prerequisites we can finally formulate the main result of this section:

Theorem 7.1. Under the stated assumptionsλk(Mε) → λk(Q0) asε→ 0.

To prove it, our aim is again to find a two sided estimate on each eigenvalueλk(Mε) by
means ofλk(Q0) with an error which is o(1) w.r.t. the parameterε.

7.3. An upper bound

Again, we first show the easier upper eigenvalue estimate:

Theorem 7.2. λk(Mε) ≤ λk(Q0)+ o(1)holds asε→ 0.

We define the transition operator by

Φεu(z) :=



vol(V−ε,k)
−1/2uk if z ∈ Vk,

ε−m/2uj(x)+ ρ(x)(vol(V−ε,k)
−1/2uk − ε−m/2uj(x0)) if z = (x, y) ∈ Uj

(7.9)

for anyu ∈ D0, whereρ is a smooth function as in(5.11)andx0 = x0
jk denotes the endpoint

of the half-edgeIjk away from the vertexvk. Theorem 7.2is then implied byLemma 2.1
in combination with the following result.

Lemma 7.3. We haveΦεu ∈ H1(Mε), i.e.,Φε maps the quadratic form domainD0 into
the quadratic form domain of the Laplacian on the manifold. Furthermore,

‖u‖2
H0
− ‖Φεu‖2

Mε
≤ o(1)‖u‖2

H0
(7.10)

‖dΦεu‖2
Mε
− q0(u) ≤ o(1) (‖u‖2

H0
+ q0(u)) (7.11)

Proof. The argument is analogous to the proof ofLemma 6.4. The only difference is that
we need the following estimate

εm|vol(V−ε,k)
−1/2uk − ε−m/2uj(x0)|2

=
∣∣∣εm/2(volV−ε,k)

−1/2 − (volV−k )−1/2
∣∣∣2 |uk|2

sinceu ∈ D0. The last difference is of order o(1) by(7.8). �
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7.4. A lower bound

The estimate onλk(Mε) from below can be found in analogy with the slowly decaying
case inSection 6. Furthermore, we need the following averaging operator

C−k u := 1

volV−k

∫
V−
k

udV−k .

Since we have an exact scaling of the metric of orderεα by (7.6), we also could use the
ε-depending manifoldV−ε,k here (cf. alsoRemark 5.7).

Lemma 7.4. For all u ∈ H1(V−ε,k) we have

|C−k u−Nju(x0)|2 ≤ o(ε−m) ‖du‖2
Vε,k

Proof. We have

|C−k u−Nju(x0)| ≤ |C−k u−Nju(x+)| + |Nju(x+)−Nju(x0)|.

The first difference can be estimated in the same way asLemma 5.5(replacingVk by V−k )
and using estimate(7.7), i.e., we arrive at

|C−k u−Nju(x+)|2 ≤ O(ε−(d−2)α) ‖du‖2
V−ε

;

recall that now we haveαd = m. For the second difference, use(6.17). �
Similarly to Lemma 6.5we can prove:

Lemma 7.5. For all u ∈ H1(V−ε ), we have

‖u‖2
V−ε

− ‖C−u‖2
V−ε ≤ O(εα)(‖u‖2

V−ε
+ ‖du‖2

V−ε
).

Now we define the transition operator by

(Ψεu)j(x) := εm/2
(
Nju(x)+ ρ(x)(C−k u−Nju(x0))

)
, for x ∈ Ijk,

(Ψεu)k := εm/2(volV−k )1/2C−k u (7.12)

whereρ is a smooth function as in(5.11)andx0 = x0
jk denotes the endpoint of the half-edge

Ijk corresponding to the vertexvk.

Lemma 7.6. We haveΨεu ∈ D0 if u ∈ H1(Mε). Furthermore,

‖u‖2
Mε
− ‖Ψεu‖2

H0
≤ o(1)(‖u‖2

Mε
+ ‖du‖2

Mε
) (7.13)

q0(Ψεu)− ‖du‖2
Mε

≤ o(1)(‖u‖2
Mε
+ ‖du‖2

Mε
) (7.14)

for all u ∈ H1(Mε).
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Proof. The arguments are the same as in the proof ofLemma 6.10. For the vertex contri-
bution, we need the estimate

‖u‖2
V−
ε,k

− εm(volV−k )|C−k u|2

= (‖u‖2
V−
ε,k

− ‖C−k u‖
2
V−
ε,k

)+
(

volV−ε,k
εmvolV−k

− 1

)
εm‖C−k u‖

2
V−
k
.

The first difference can be treated withLemma 7.5and leads to an error term O(εα). The
second term is of order o(1)‖u‖2

V−
ε,k

by (7.7), (7.8) and Cauchy–Schwarz. Furthermore,

Corollary 6.8is also true in this setting (independent on the particularα). We also need
Lemma 7.4. �

Using Lemma 7.6we arrive at the sought lower bound. Again, the error termηk in
(2.11) can be estimated by someε-independent quantity becauseλk = λk(Mε) ≤ ck by
Theorem 7.2.

Theorem 7.7.We haveλk(Q0) ≤ λk(Mε)+ o(1).

Theorem 7.1now follows easily by combining the last result withTheorem 7.2.

8. Non-decaying vertex volume

In this section, we treat the case when the vertex volume does not tend to 0. In some
sense, this case corresponds toα = 0 in the previous notation but we need more assumptions
to precise the convergence of the manifoldVε,k to a manifoldV0,k asε→ 0. We cite only
the result here since it has already been presented in[20] or with a more detailed proof in
[19]. A related result corresponding to the embedded case (seeExample 4.1) as in[16] was
proven by Jimbo and Morita in[11] or for manifolds (with non-smooth junctions between
edge and vertex neighbourhoods) by Anné and Colbois in[2].

Furthermore, we assume that the transversal direction is a sphere, i.e.,F = Sm. LetV0,k
be a compactd-dimensional manifold without boundary fork ∈ K. To each edgej ∈ Jk
emanating from the vertexvk, we associate a pointx0

jk ∈ V0,k such thatx0
jk (j ∈ Jk) are

mutually distinct points with lower bound 2ε0 > 0 on their distance to each other. We assume
for simplicity that the metric atx0 = x0

jk is locally flat within a distanceε0 from x0 (the
general case can be found in[20]). Then the metric in polar coordinates (x, y) ∈ (0, ε0)× Sm
looks locally like

g = dx2 + x2 hy

wherehy is the standard metric onSm. Modifying the factor beforehy, we define a new
metric by

gε = dx2 + r2ε (x)hy
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with a smooth monotone functionrε : (0, ε0) −→ (0,∞) such that

rε(x) =
{
ε for 0< x < 1

2ε

x for 2ε < x < ε0.

We denote the (completion of the) manifold (V0,k \
⋃
j∈Jk {x0

jk|j ∈ Jk}, gε) byVε,k. Note

that this manifold has|Jk| attached cylindrical ends of orderε at each pointx0
jk. Now we

can construct the graph-like manifoldMε as inSection 3.
As in the slowly decaying case ofSection 6the limit operator

Q0 :=
⊕
j∈J

�DIj ⊕
⊕
k∈K

�V0,k

decouples and the next result follows (cf.[20, Theorem 1.2] or [19]):

Theorem 8.1. We haveλk(Mε) → λk(Q0) asε→ 0.

9. Applications

Finally we comment on consequences of the spectral convergence. We begin with a
general remark stating that we only have uniform control over acompactspectral interval:

Remark 9.1. Note that the convergenceλk(Mε) → λk(M0) cannot be uniform ink ∈ N:
if this were the case, the theta-function

Θε(t) := tr e−t �Mε =
∑
k

e−tλk(Mε)

would converge toΘ0(t). But Weyl asymptotics are different in the two cases,

Θε(t) ∼ voldMε
(4πt)d/2

, whereas Θ0(t) ∼ vol1M0

(4πt)1/2

ast→ 0 (cf. [6], [Sec. VI.4] and[22], [Thm. 1]). Recall thatd ≥ 2 and vol1M0 :=∑
j �j,

i.e., the sum over the length of each edge.

9.1. Periodic graphs

Suppose we have an infinite graphX0 on which a discrete, finitely generated groupΓ
operates such that the quotientM0 := X0/Γ is a finite graph. In the same way as in the
previous sections, we can associate a family of graph-like compact manifoldsMε to the
graphM0. By a lifting procedure we obtain a (non-compact) covering manifoldXε of Mε
with deck transformation groupΓ , i.e.,Mε is isometric toXε/Γ . Furthermore,Xε is a
graph-like manifold collapsing to the infinite graphX0.
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We are interested in spectral properties of the non-compact manifoldsXε. Assuming
thatΓ is Abelian, we can apply Floquet theory (for a non-commutative version see[18]).
Instead of investigating�Xε we analyze a family of operators�θMε , θ ∈ Γ̂ , whereΓ̂ is the

dual group, i.e., the group of homomorphisms fromΓ into the unit circleT1. The operator
�θMε acts on a complex line bundle over the compact manifoldMε, or equivalently, over the
closure of a fundamental domainDε ⊂ Xε with θ-periodic boundary conditions. We call
the closureD̄ε aperiod celland denote it also byMε (for details see, e.g.,[25] or [20]). The
direct integral decomposition implies

spec�Xε =
⋃
k∈N

Bk(ε), Bk(ε) := {λθk(Mε)|θ ∈ Γ̂ }

whereBk(ε) is a compact subset of [0,∞), called thekth band.6 A similar assertion holds
for the limit operator onXε.

9.2. Spectral gaps

We are interested in the existence ofspectral gapsof the operator�Xε , i.e., the existence
of an interval [a, b], 0 < a < b, such that spec�X0 ∩ [a, b] = ∅. Note that spec�Xε is
purely essential.

Theorem 9.2. We haveλθk(Mε) → λθk(Q0) for ε→ 0 uniformly inθ ∈ Γ̂ . Furthermore,

Bk(ε) ∩ Bk+1(ε) = ∅ if Bk(0)∩ Bk+1(0)= ∅

providedε is small enough. In particular, an arbitrary(but finite) number of gaps open
up in the spectrum of�Xε provided the limit operatorQ0 has enough gaps andε is small
enough.

Proof. The spectral convergence can be proven in the same way as in the previous sections.
Note that the error terms convergeuniformlyin θ ∈ Γ̂ since all error bounds are independent
of θ. The only point whereθ enters is the error estimate(2.11) for the lower eigenvalue
estimate. In this case, we argue as follows: we haveλθk(Mε) ≤ λD

k (Mε), i.e., the Dirichlet
Laplacian eigenvalues form an upper bound on theθ-periodic eigenvalues. Here, we pose
Dirichlet boundary conditions on the boundary of the period cell. Furthermore,λD

k (Mε) →
λD
k (M0) by the same arguments as in the previous sections. Therefore, we can choose
λk = λθk(Mε) ≤ λD

k (Mε) ≤ 2λD
k (M0) in (2.11)independentlyof θ. �

Note that we cannot expect to show the existence ofinfinitely manygaps inXε even if
spec�X0 has infinitely many gaps since the convergence is not uniform ink (cf. Remark
9.1). This is related to the deep open problem about the validity of the Bohr–Sommerfeld
conjecture on such periodic manifolds.

6 Note thatΓ̂ is connected iffΓ is torsion free, e.g., ifΓ = Z× Z2 thenΓ̂ ∼= T1 × Z2 which is homeomorphic
to two disjoint copies of the unit circleT1. Therefore, the bandsBk(ε) being the continuous image of̂Γ under the
mapθ �→ λθk(Mε) need not to be intervals.
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Remark 9.3. If two neighboured bandsBk(0) andBk+1(0) overlap, i.e., intersect in a set
of positive length, the same is true forBk(ε) andBk+1(ε) providedε is small enough. In
contrast, if the bands intersect only inonepoint, i.e., if theytoucheach other, we cannot
say anything about the (non-)existence of gaps in the spectrum of�Xε .

For the rest of this section we discuss examples for whichTheorem 9.2applies.

9.3. Decoupling limit operators

Suppose that our graph-like periodic manifoldXε is constructed as inSection 6or 8. In
this case, the limit operator is a direct sum of the limit operator on the quotientM0 since
the limit operatordecouples. Therefore, the bandsBk(0) degenerate to the pointsλk(Q0),
whereQ0 is given as inSection 6or 8 and the limit operator onX0 has infinitely many gaps.
This means, in particular, that the limit spectrum is not absolutely continuous, while those
of the approximating operators may be. Furthermore,Theorem 9.2applies in this case.

9.4. Cayley graphs and Kirchhoff boundary conditions

In the following three subsections, we give examples of graph-like manifolds with fast
decaying vertex volume as constructed inSection 5such that�Xε has spectral gaps. In
this case, the limit operator is the Laplacian�X0 on the graphX0 with Kirchhoff boundary
conditions as in(2.3). We want to calculate the spectrum of�X0 for certain graphsX0. For
simplicity, we assume thatpj ≡ 1 and that each edge has length 1.

Suppose thatΓ is an Abelian, finitely generated discrete group. Therefore,

Γ ∼= Zr0 × Zr1p1
× · · · × Zrapa

whereZp is the cyclic group of orderp. Furthermore,r0 > 0 sinceX0 is non-compact and
X0/Γ is compact. Denoter := r0 + r1 + · · · + ra.

We assume thatX0 is the (metric) Cayley graph associated toΓ w.r.t. the canonical
generatorsε1, . . . , εr (εj equals 1 at thejth component and 0 otherwise), i.e., the set of
vertices isΓ and two verticesγ1, γ2 are connected iffγ2 = εjγ1 for some 1≤ j ≤ r (see
Fig. 5). Note thatX0 is 2r-regular, i.e., each vertex meets 2r edges. We want to calculate
the eigenfunctions and eigenvalues of theθ-periodic operator�θM0

, i.e., functionsuj on
Ij ∼= [0,1] satisfying−u′′j = λuj with the boundary conditions

uj(0)= u(0), e−iθjuj(1)= u(0) and
r∑
k=1

(e−iθku′k(1)− u′k(0))= 0 (9.1)

for all j = 1, . . . , r. Here,θ ∈ Tr0 × Tr1p1 × · · · × Trapa , whereTp := {ξ ∈ R/Z|eiξp = 1} is
the group ofpth unit roots (isomorphic toZp). Note that we have identifiedθ ∈ Tr with
γ �→ eiθγ ∈ Γ̂ .

If λ = ω2 > 0 (andω > 0) we make the Ansatz

uj(x) := Z cos(ωx)+ Aj sin(ωx). (9.2)
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Fig. 5. The Cayley graph associated to the groupΓ = Z× Z2 and the corresponding period cell. Note that�X0

has no spectral gaps

Non-trivial solutions of the eigenvalue problem exist iffω = �π, � ∈ N, or

cosω = 1

r

r∑
k=1

cosθk. (9.3)

The solutionsω = �π correspond to Dirichlet eigenfunctions on each edge and produce
therefore bands degenerated to a point{(�π)2}. The multiplicity isr − 1 providedθ �= 0 (if
� is even) resp.θ �= π (if � is odd) andr + 1 if θ = 0 resp.θ = π (modulo 2π). If ω �= �π,
the eigenvalues are simple. Note that the bands atω2 = (�π)2 do not overlap, buttouch
each other.

Forω = 0, we need a special Ansatz. The only possibility is the case of periodic boundary
conditions (θ = 0); the eigenvalue is simple.

Theorem 9.4. If one of the ordersp1, . . . , pa is odd, the operator�X0 has infinitely
many spectral gaps below and above(2�+ 1)2π2 (� = 0,1, . . .). In particular, Theorem
9.2 applies. Furthermore, the bands{(2�+ 1)2π2} are degenerated to a point and have
multiplicity r − 1.The gap length increases as�→∞.

If all ordersp1, . . . , pa are even thenspec�X0 = [0,∞).

Proof. We analyze the behaviour ofω in dependence of the continuous parameters
θ1, . . . , θr0 ∈ Tr0 given by the relation(9.3). We have gaps iff 1/r

∑r
k=1 cosθk in (9.3)

does not cover the whole interval [−1,1]. We reach the maximal value 1 iff allθj = 0
(j = 1, . . . , r) and the minimal value−1 iff all θj = π (j = 1, . . . , r). The latter can
only occur if all group orders are even. Note that in this case, the whole interval [−1,1]
can be covered by an appropriate choice of theθj ’s, j = r0 + 1, . . . , r. If onepj is odd,
there existsε > 0 such that(9.3)has no solution provided (2�+ 1)π − ε < ω < (2�+ 1)
π + ε. �

We cannot say anything about the (non-)existence of gaps in the case when all orders
p1, . . . , pa are even. If, e.g.,Γ = Z× Z2, the bands do not overlap, but touch each other
and fill the whole half line [0,∞) (cf. Remark 9.3).

9.5. Non-commutative groups

We comment briefly on a similar result for certain non-commutative groupsΓ . Here,
Γ̂ consists of (equivalence classes of) irreducible unitary representations (cf.[18]). A sim-
ple example is given byΓ = Z×Dn, whereDn denotes the dihedral group of order 2n
generated byα, β with α2 = e, βn = e andαβ = β−1α. In this case the Laplacian on the
corresponding Cayley graph (cf.Fig. 6) has infinitely many spectral gaps below and above
(2�+ 1)2π2, � = 0,1, . . . , if n is odd. Ifn is even, spec�X0 = [0,∞). For a related family
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Fig. 6. The Cayley graph associated to the groupΓ = Z×D3, whereD3 is the dihedral group of order 6. The
corresponding Laplacian has spectral gaps.

of sleeve manifolds in case of oddn there is an arbitrary large number of open gaps provided
the sleeve radius is small enough.

9.6. Cayley graphs with loops

If we set one (or more) of the group orderspj equal to 1 we formally attach a loop (or
more) at each vertex (seeFig. 7).

Theorem9.5. TheLaplacianof aCayleygraphassociated toanarbitrary finitely generated
Abelian discrete groupΓ has infinitelymany spectral gaps providedweattach at each vertex
a fixed number of loops.

Proof. Formally, the assertion follows fromTheorem 9.4. Note thatẐ1 = {0}, i.e., the
corresponding component ofθ cannot beπ and therefore, the minimum−1 cannot be
achieved in(9.3). �

This is an analogue of gap generation by decoration of the graph as discussed by Aizen-
man and Schenker in[4].

9.7. Cayley graphs and the borderline case

In the borderline case, the eigenvalue problem of the limit operator is more complicated.
Here, functionsuj on Ij ∼= [0,1] satisfy−u′′j = λuj with the boundary conditions

uj(0)= u(0), e−iθjuj(1)= u(0) and
r∑
k=1

(e−iθku′k(1)− u′k(0))= cλu(0) (9.4)

Fig. 7. The Cayley graph associated to the groupΓ = Z× Z2 × Z1, where the trivial groupZ1 leads to the
attachment of a loop at each vertex. On the right, the corresponding period cell is shown. Note that�X0 has
spectral gaps in contrast to the example without loops.
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for all j = 1, . . . , r, wherec2 is the volume of the (unscaled) vertex neighbourhood (cf.
(7.3)). Again, with the Ansatz(9.2), non-trivial solutions of the eigenvalue problem exist
iff

cosω − ω sinω

2rc
= 1

r

r∑
k=1

cosθk. (9.5)

Note that formally the casec = 0 corresponds to the Kirchhoff boundary condition case.
Again, the solutionsω = �π belong to Dirichlet eigenfunctions on each edge and produce
therefore bands degenerated to a point{(�π)2}.

Theorem 9.6. The limit operatorQ0 in the borderline case defined on a Cayley graph
associated to an arbitrary finitely generated Abelian discrete groupΓ has infinitely many
spectral gaps located around(2�+ 1)2π2/4 provided� is large enough. If at least one
group orderpj is odd, we have also spectral gaps below and above(2�+ 1)2π2 for �
= 0,1, . . ..

Proof. The functionf (ω) := cosω − ω sinω/(2rc) oscillates with an amplitude of order
ω. In particular, forω = (2�+ 1)π/2 we have|f (ω)| = (2�+ 1)π/(4rc), i.e., there is no
solution of(9.5) provided� is large enough. Furthermore, sincef ((2�+ 1)π) = −1, we
can argue as inTheorem 9.4. �

Returning to our graph-like periodic manifolds, we have the following situation: In the
case of fast decaying vertex volume, i.e., (d − 1)/d < α ≤ 1, we have spectral gaps below
and above (2�+ 1)2π2 provided at least one orderpj is odd. In particular, (2�+ 1)2π2

is an isolated eigenvalue (degenerated band). In the borderline case, these gaps remain
open. Furthermore, we always have spectral gaps around (2�+ 1)2π2/4 provided� is
large enough. In the case of slowly decaying vertex volume, i.e., 0< α < (d − 1)/d, all
bands concentrate around�2π2, i.e., we have large gaps around (2�+ 1)2π2/4 for all �
= 0,1, . . ..

The situation is more complicated if we allow different length ratios for the edges. In
such a case the spectrum could be more complicated; recall the example of a lattice graph
discussed in[9] shows where number-theoretic properties of parameters play a rôle. This
interesting question will be considered separately.
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